FLYING FARMERS TO PLAN FLYING EVENTS

James Shaw, Minot, President of the North Dakota Flying Farmers and Ranchers announced that he is calling a meeting at Bismarck on August 13th at 12:00 noon of all the Directors of the State Flying Farmers for the purpose of organizing district level local fly-ins in the four districts of the State.

The Flying Farmers district directors are: Northeast District: Rudolph Johnson and Leonard DeSautel, Grafton; Southeast: R.C. Lindemann, Lucca and Francis Simmers, Jamestown; Northwest: Herman Johnson, Crosby and Robert Chitwood, Alexander and Southwest: John Kirschman, Regent and John Kinswater, Bucyrus, N.D.

The August 13th Directors meeting will assemble at 12:00 at the Bismarck new terminal building for lunch and a meeting will follow at Harold G. Vavra's Office, who is Secretary of the North Dakota Flying Farmers.

FAA AIRCRAFT REGISTRATION CERTIFICATES—HOW TO STAY LEGAL

In the past year, more aircraft have been bought and sold both new and used in the State compared with previous years. This has brought to light a number of problems which point up the need for an educational program for both the seller and purchaser of aircraft. The average purchaser of a new or used aircraft may have a trade-in aircraft.

The Aeronautics Commission has found a number of cases, where the owner of an aircraft, who purchases a new or used aircraft, has left all of the paper work up to the Dealer or Seller of the aircraft, not realizing that the owner of an aircraft has certain responsibilities to keep the transaction legal and avoid conflict with the Civil Air Regulations. The points to consider when you trade your airplane for a new or used airplane follow:

1. Your present airplane carries an FAA registration Certificate (Form ACA500 or new Form 8050-2) in the aircraft in the owner's name. When the owner sells an aircraft or trades it in to another party, it is the responsibility of the owner to remove the owners FAA Certificate of Registration from the aircraft and:
 a. Request on the back thereon that the registration be cancelled,
 b. Also state that the ownership of the aircraft is transferred to: (Name and Address of new owner). Insert the date.
 c. Mail the FAA Aircraft Registration Certificate to FAA Aircraft Registry, Box 1082, Oklahoma City, Oklahoma.

If you fail to remove the FAA aircraft registration certificate from the aircraft at the time of sale, the new owner may be operating the aircraft under your name as the registered owner. This is especially hazardous if the new owner of your aircraft does not mail the 'Bill of Sale' to the FAA Aircraft Registry, Oklahoma City, Okla. Under these circumstances, the actual title to your airplane, which you have sold or traded off is still in your name in the official FAA records at Oklahoma City. In the event of an accident or violation of the Federal Air Regulations, you will be directly involved regardless of the fact that you no longer have possession of the aircraft, since you failed to carry out the owner's obligation for the removal of the aircraft registration certificate and send it to the FAA, Oklahoma City.

The reason that this is important is that some aircraft dealers may not mail the 'Bill of Sale' immediately to the FAA Aircraft Records Section, Oklahoma City, Oklahoma, until they have sold the used aircraft in question to another party.

Thus, if you fail to pick up your FAA aircraft registration certificate from your aircraft upon sale of same and send it to the FAA, Oklahoma City, there is no official federal record that you no longer have possession of the airplane. The official records show to the contrary, which can cause you considerable grief, in the event the aircraft previously owned by you is involved in an accident or in violation of the Federal Air Regulations.

NORTH DAKOTA FLYING FARMERS ELECT AT ANNUAL CONVENTION

The North Dakota Flying Farmers and Ranchers elected a new slate of officers at the Grand Forks Annual Convention held June 11 and 12th. James H. Shaw, Minot was elected President succeeding Lee O. Genrich of Hatton. Francis Simmers, Jamestown was elected Vice President.

James Shaw and Francis Simmers were named voting delegates to represent the N.D. Flying Farmers at the International Flying Farmers Convention at Louisville, Kentucky in July this year. Alternate delegates are William Homestead, Crosby and Clell Rambough, Braddock.
The Civil Aeronautics Board listed the probable cause of a recent fatal light aircraft accident as structural failure of the light aircraft resulting from excessive airloads created by wing-tip vortices behind a large aircraft. The report also states: "The dangers of wake or vortex turbulence are still unknown to many pilots."

1. WHAT ARE WING-TIP VORTICES? It is unfortunate that vortices are invisible. If you could see them, they would look like a pair of horizontal tornadoes stretching back from each wing-tip. These violent, compact, and fast-spinning air masses extend behind an aircraft for miles. Many pilots refer to this phenomenon as 'prop wash' or 'jet wash', but engineering studies have revealed this term a misnomer. The main source of this disturbance is not from the power plant; it is from the wing-tips.

2. WHY ARE THEY DANGEROUS? They are dangerous because all tests to date indicate that structural failure in the air can occur in light aircraft upon penetration of the vortices behind larger transport aircraft. During takeoff or landing, care should be taken to avoid vortex disturbance. Loss of control could be the result at a critical time when control is of prime importance to safety.

3. UNDER WHAT CONDITIONS ARE THEY MOST DANGEROUS? There are many factors affecting the intensity of wing-tip vortices, but it is a safe and practical generalization that the bigger the airplane, the more violent and long-lived will be the vortex disturbance. The source of this insidious danger can be out of sight by the time you encounter the wake. For example: A large aircraft could take off and be out of sight, or landed and be on the ramp and the vortices turbulence could still be present near the runway. No practical rule involving a time interval for one aircraft to fly behind another will assure avoidance of the vortices generated by the first. The heavier and slower the aircraft is flying, the greater the intensity of the air circulation in the vortex cores. A modern large transport aircraft will create vortices of maximum turbulence during take-offs and landings at high(gross weights).

4. WHAT ACTION CAN THE PILOT TAKE TO AVOID OR REDUCE THIS HAZARD?
 a. Avoid passing behind any large aircraft.
 b. Avoid, when possible, places and altitudes frequented by large aircraft.
 c. Constantly monitor your radio for location of such aircraft.
 d. When it is necessary to operate behind a large heavy aircraft, remain above the flight path of that aircraft. Vortices settle downward toward the surface and also they are affected by the wind and move with the air mass.
 e. When taking off or landing behind large aircraft, be on the alert for the first sign of turbulence; allow adequate spacing, maintain higher than normal speeds, use the windward (upwind) side of the runway, and maintain a flight path to the windward side of the preceding aircraft.

AIRPORT QUESTIONNAIRE

The Aeronautics Commission is contemplating revising the North Dakota Aeronautical Chart and is making a survey of all airports and facilities in the State. We are interested in a response from all airports, Public, Private and Flying Farmer & Rancher landing strips to bring our information up to date, regardless of whether you believe we have the information. Do it today, as time is limited.

Airport Name ___________________________ Loc. from nearest city in miles _______________________

ELEVATION MSL ____________________________

Runway Runway Runway Type of Surface Obstructions
Dir. Length Width Smooth, Rough, Fair Location, type and height

Runway Markers Describe __

Tie-Downs Yes ______ or No ______ Gas & Oil: (If so, what Octane?) __________________________

Wind Sock Yes ______ or No ______

Remarks: ___

Airport Manager or Person Responsible for Airport ___________________________ Address: __________

Person Making this Report: Name ___________________________
National Law Enforcement'o

PART V. TAKE-OFF AND LANDING PROCEDURES

5. Take-off Procedures

(a) General

The operator shall ensure that the airplane is in a safe condition for take-off before proceeding to take-off.

(b) Take-off Distance

The take-off distance is determined by a combination of the airplane's weight, the runway length, the take-off surface, and the environmental conditions.

(c) Take-off Speed

The take-off speed is determined by the airplane's weight, the runway length, the take-off surface, and the environmental conditions.

(d) Take-off Distance

The take-off distance is determined by a combination of the airplane's weight, the runway length, the take-off surface, and the environmental conditions.

(e) Take-off Speed

The take-off speed is determined by the airplane's weight, the runway length, the take-off surface, and the environmental conditions.

(f) Take-off Distance

The take-off distance is determined by a combination of the airplane's weight, the runway length, the take-off surface, and the environmental conditions.

(g) Take-off Speed

The take-off speed is determined by the airplane's weight, the runway length, the take-off surface, and the environmental conditions.

(h) Take-off Distance

The take-off distance is determined by a combination of the airplane's weight, the runway length, the take-off surface, and the environmental conditions.

(i) Take-off Speed

The take-off speed is determined by the airplane's weight, the runway length, the take-off surface, and the environmental conditions.

(j) Take-off Distance

The take-off distance is determined by a combination of the airplane's weight, the runway length, the take-off surface, and the environmental conditions.

(k) Take-off Speed

The take-off speed is determined by the airplane's weight, the runway length, the take-off surface, and the environmental conditions.

(l) Take-off Distance

The take-off distance is determined by a combination of the airplane's weight, the runway length, the take-off surface, and the environmental conditions.

(m) Take-off Speed

The take-off speed is determined by the airplane's weight, the runway length, the take-off surface, and the environmental conditions.

(n) Take-off Distance

The take-off distance is determined by a combination of the airplane's weight, the runway length, the take-off surface, and the environmental conditions.

(o) Take-off Speed

The take-off speed is determined by the airplane's weight, the runway length, the take-off surface, and the environmental conditions.

(p) Take-off Distance

The take-off distance is determined by a combination of the airplane's weight, the runway length, the take-off surface, and the environmental conditions.

(q) Take-off Speed

The take-off speed is determined by the airplane's weight, the runway length, the take-off surface, and the environmental conditions.

(r) Take-off Distance

The take-off distance is determined by a combination of the airplane's weight, the runway length, the take-off surface, and the environmental conditions.

(s) Take-off Speed

The take-off speed is determined by the airplane's weight, the runway length, the take-off surface, and the environmental conditions.

(t) Take-off Distance

The take-off distance is determined by a combination of the airplane's weight, the runway length, the take-off surface, and the environmental conditions.

(u) Take-off Speed

The take-off speed is determined by the airplane's weight, the runway length, the take-off surface, and the environmental conditions.

(v) Take-off Distance

The take-off distance is determined by a combination of the airplane's weight, the runway length, the take-off surface, and the environmental conditions.

(w) Take-off Speed

The take-off speed is determined by the airplane's weight, the runway length, the take-off surface, and the environmental conditions.

(x) Take-off Distance

The take-off distance is determined by a combination of the airplane's weight, the runway length, the take-off surface, and the environmental conditions.

(y) Take-off Speed

The take-off speed is determined by the airplane's weight, the runway length, the take-off surface, and the environmental conditions.

(z) Take-off Distance

The take-off distance is determined by a combination of the airplane's weight, the runway length, the take-off surface, and the environmental conditions.
PILOT: R.A. Standard, Aberdeen, South Dakota
Time & Place: April 29, 1966, 10:40 p.m., Fargo, N. Dak.
Pilot Time: 500 hrs. TT, Commercial, SEL, Age 52
AirCraft & Damage: Bellanca 250, Damage unknown. INJURIES: Unknown
Pilot Statement: Weakened battery necessitated propping engine to start. Assistant in plane holding brakes when plane got out of control, striking another plane on the parking ramp.

PILOT: Francis Dahlberg, Roseglen, N. Dak.
Time & Place: May 24, 1966, 8:15 p.m., Farm at Roseglen, N.D.
Pilot Time: 40 hrs. TT, Student, Age 36
AirCraft & Damage: Cessna 170B, Damage to prop and wing. INJURIES: None
Pilot Statement: Aircraft didn't break ground by the time it reached a plowed field. It then nosed over.

PILOT: Richard Fugleberg, Portland, N.D.
Time & Place: June 1, 1966, 11:00 a.m., Vince Field, Northwood, N. Dak.
Pilot Time: 27 hrs. TT, Student, Age 21.
AirCraft & Damage: Piper PA-22, Damaged wings, prop, engine mount. INJURIES: None
Pilot Statement: Landing in cross wind, gust carried aircraft off runway into soft field and flipped it over on its back.

PILOT: Richard Krueger, 2401 Blake Rd., Minot, N.D.
Time & Place: June 2, 1966, 7:30 p.m., Minot International Airport.
Pilot Time: 13 hrs. TT, Student, Age 28.
AirCraft & Damage: Ryan Navion, Damaged prop and flaps. INJURIES: None
Pilot Statement: Was practicing landing and didn't get the gear handle down all the way, so gear would release.

PILOT: Keith D. Danks, 722 Reeves Drive, Grand Forks, N.D.
Time & Place: June 16, 1966, 3:00 p.m., Grand Forks International Airport.
Pilot Time: 37 hrs. TT, Student, ASEL, Age 30
AirCraft & Damage: Cessna 170, Damage to both wings, prop, rudder and stabilizer. INJURIES: None
Pilot Statement: Student pilot had been flying 150 Cessna except for last 4:30. Instructor had soloed me out in 170Cessna at 3:45 minutes. On my 3rd solo landing I think I had my feet too high and hit the brake too hard. Plane started swerving on runway and I gave it power to take off again and got it back in air then stalled it out.

PILOT: D.B. Hoggers, Rham, N.D. (SPRAYING)
Time & Place: June 18, 1966, On road SW of Rham, N.D.
Pilot Time: 2600 hrs. TT, Commercial, SEL, Age 42
AirCraft & Damage: Piper Pawnee, Minor damage to wing tip and front spar. INJURIES: None
Pilot Statement: I was landing on a road SW of Rham to clean my windshield and the right brake failed and I run in the ditch and hooked the end of the wing on the fence.

PILOT: James Middagen, Grafton, N.Dak. (SPRAYING)
Time & Place: June 20, 1966, 7:45 p.m., 2 miles west ½ mile north of Nash, N.D.
Pilot Time: 390 hrs. TT, Commercial, Age 28
AirCraft & Damage: Piper PA-11, Totally Demolished INJURIES: Minor
Pilot Statement: Had been a hot day, waited till about 7:00 p.m. then took out light load. Made one pass and pulled up over high trees, just as I made tops of trees, hit dead air, left wing dropped in stall, hit a tree with right wing just before hitting the ground.

PILOT: Verle L. Paul, Box 94, Laurel, Iowa (SPRAYING)
Time & Place: June 21, 1966, 3:30 p.m., 15 miles south, one mile west of Elgin, N.D.
Pilot Time: 330 hrs. TT, Commercial, ASEL, Age 28
AirCraft & Damage: Piper PA-18A, Broken Bow, right wing, bent spar, right wing, twisted fuselage. INJURIES: None
Pilot Statement: I was landing on a road and the spray boom came in contact with some trees. It pulled me in the field with a sudden turn around.

PILOT: Leigh R. Aslakson, 5625 5th Ave. N.E., Jamestown, N. D. (SPRAYING)
Time & Place: June 21, 1966, 0830 a.m., 20 miles SW of Jamestown, N.D.
Pilot Time: 3990 hrs. TT, Commercial, FL, ASEL, Instrument, Age 30
AirCraft & Damage: Piper PA-25, Bent propeller, left wing tip, bent lower tail post. INJURIES: None
Pilot Statement: This was the second landing of the day on the same road. During the first landing the wind was calm and cross wind landing procedure was not used. While I was spraying, the load of chemical out, the wind came up from the SSE at 10 knots. On landing, left crosswind landing procedure was used. Apparently with the left aileron up for the crosswind, there must have been enough clearance from the trailing edge of the wing to the boom for grass along the shoulder of the road to wrap around the boom and pull the aircraft into the ditch.